## SCHISANLACTONE B, A NEW TRITERPENOID FROM A SCHISANDRA SP.

Jia-Sen Liu<sup>\*</sup> and Mei-Fen Huang Shanghai Institute of Materia Medica Chinese Academy of Sciences, 319 Yue-Yang Road Shanghai 200031, China

and

William A. Ayer<sup>\*</sup> and Glen Bigam Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2, Canada

Abstract: Schisanlactone B, a triterpenoid isolated from a <u>Schisandra</u> <u>sp</u>., is shown to have structure 2.

In the preceding paper,<sup>1</sup> we reported the structure of schisanlactone A (1), a triterpenoid isolated from an unidentified <u>Schisandra sp</u>. indigenous to the Hubei province of China. We report herein the structure of schisanlactone B, obtained from the same source.<sup>1</sup>

Schisanlactone B (2),  $C_{30}H_{42}O_4$  (M<sup>+</sup> 466.3074), mp 205-207°,  $[\alpha]_D^{20}$  +80.2° ( $\underline{c}$  0.94, CHCl<sub>3</sub>), like schisanlactone A,<sup>1</sup> possesses two unsaturated lactone rings as indicated by IR (1715 cm<sup>-1</sup> for six membered and 1675 cm<sup>-1</sup> for seven-membered  $\alpha,\beta$ -unsaturated lactones), <sup>1</sup>H NMR (see Table 1) and <sup>13</sup>C NMR (see Table 2). However, schisanlactone B has only four olefinic carbons and thus must have one ring more than schisanlactone A. The UV spectrum ( $\lambda_{max}^{MeOH}$  251 nm (log  $\epsilon$  4.15)) indicates that one of the unsaturated lactones is further conjugated. The appearance of only six methyl groups (<sup>1</sup>H NMR), along with the presence of a pair of one-proton doublets at  $\delta$  1.05 and  $\delta$  1.24, suggests the presence of a cyclopropane ring. Conjugation of the cyclopropane ring with the A-ring lactone accounts for the UV peak at 251 nm<sup>2,3</sup> and leads to structure 2, which is consistent with the NMR spectrum. The high field position ( $\delta$  0.81) of H-6<sub>ax</sub> and the low field position ( $\delta$  1.87) of H-6<sub>eq</sub> are accounted for by the shielding and deshielding effects, respectively, of the cyclopropane ring.<sup>4</sup> The low field position ( $\delta$  2.07) of H-11<sub>ax</sub> and the cyclopropane hydrogens are due to deshielding by the ring A double bond.

The stereochemistry shown in 2 was further confirmed by measurement of nuclear Overhauser effects (shown in Table 3), by selective  ${}^{1}\text{H}-{}^{1}\text{H}$  decoupling experiments (which confirm the coupling assignments in Table 1), and the  ${}^{13}\text{C}$  NMR data shown in Table 2. Schisanlactone B shows a negative Cotton effect at 240 nm ( $\Delta_{_{\rm E}}$  -7.07) in its CD spectrum, opposite to that of schisanlactone A<sup>1</sup>, and thus is tentatively assigned the (S)-configuration at C-22.<sup>6</sup>

2355

| Proton <sup>b</sup>            | Chemical<br>Shift | al <sup>1</sup> H- <sup>1</sup> H coupling constants                                     |  |  |  |  |  |  |
|--------------------------------|-------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| H-1                            | 6.14              | $J_{1,2} = 12.65$                                                                        |  |  |  |  |  |  |
| H – 2                          | 5.95              | $J_{1,2} = 12.65$                                                                        |  |  |  |  |  |  |
| H-5 <sub>ax</sub>              | 2.42              | $J_{5ax,6ax} = 13.11; J_{5ax,6eg} = 4.57$                                                |  |  |  |  |  |  |
| H-6 <sub>ax</sub>              | 0.81              | $J_{5ax,6ax} = 13.11; J_{6ax,6eq} = 12.91; J_{6ax,7ax} = 11.16;$<br>$J_{6ax,7eq} = 3.64$ |  |  |  |  |  |  |
| H-6 <sub>eq</sub>              | 1.87              | $J_{6ax,6eq} = 12.91; J_{6eq,7ax} = 4.59; J_{6eq,5ax} = 4.57;$<br>$J_{6eq,7eg} = 4.41$   |  |  |  |  |  |  |
| H-7 <sub>ax</sub>              | 1.23              | $J_{6ax,7ax} = 11.16; J_{6eq,7ax} = 4.59; J_{7ax,7eq} = 13.24; J_{7ax,8ax} = 10.89$      |  |  |  |  |  |  |
| H- <sup>7</sup> eq             | 1.49              | $J_{6eq,7eq} = 4.41; J_{6ax,7eq} = 3.64; J_{7eq,8ax} = 5.99; J_{7eq,7ax} = 13.24$        |  |  |  |  |  |  |
| H-8 <sub>ax</sub>              | 1.80              | $J_{7ax,8ax} = 10.89; J_{7eg,8ax} = 5.99$                                                |  |  |  |  |  |  |
| H-11 *                         | 2.07              | $J_{11ax,12ax} = 13.64; J_{11ax,12eq} = 6.84$                                            |  |  |  |  |  |  |
| H-11 eq*                       | 1.57~1.64         | $J_{11eg,12ax} = 6.62, J_{11eg,12eg} = 6.84$                                             |  |  |  |  |  |  |
| H-12 <sub>ax</sub>             | 1.69              | $J_{11ax,12ax} = 13.64; J_{11eq,12ax} = 6.62$                                            |  |  |  |  |  |  |
| H-12eq                         | 1.70              | $J_{11eq,12eq} = 6.84; J_{11ax,12eq} = 6.84$                                             |  |  |  |  |  |  |
| H-15 <sub>a</sub> *            | 1.57~1.64         |                                                                                          |  |  |  |  |  |  |
| H-15 <sub>β</sub> *            | 1.78              |                                                                                          |  |  |  |  |  |  |
| $-16_{\alpha}, 16_{\beta}^{*}$ | 1.34~1.40         |                                                                                          |  |  |  |  |  |  |
| H-17α*                         | 1.57~1.64         |                                                                                          |  |  |  |  |  |  |
| H-18                           | 0.97              |                                                                                          |  |  |  |  |  |  |
| H-19A                          | 1.24              | $J_{19A,19B} = 5.05$                                                                     |  |  |  |  |  |  |
| H-19B                          | 1.05              | $J_{19A,19B} = 5.05$                                                                     |  |  |  |  |  |  |
| H-20*                          | 2.04              | $J_{20,21} = 6.08; J_{20,22} = 3.50$                                                     |  |  |  |  |  |  |
| H-21                           | 0.98              | $J_{20,21} = 6.08$                                                                       |  |  |  |  |  |  |
| H – 22                         | 4.47              | $J_{20,22} = 3.50; J_{22,23A} = 13.14; J_{22,23B} = 3.45$                                |  |  |  |  |  |  |
| H-23A*                         | 2.38              | $J_{22,23A} = 13.14; J_{23A,23B} = 14.0; J_{23A,24} = 1.54; J_{23A,27} = 2.0$            |  |  |  |  |  |  |
| H-23B*                         | 2.10              | $J_{22,23B} = 3.45; J_{23A,23B} = 14.0; J_{23B,24} = 6.48; J_{23B,27} < 0.5$             |  |  |  |  |  |  |
| Н – 24                         | 6.62              | $J_{23A,24} = 1.54; J_{23B,24} = 6.48; J_{24,27} < 0.5$                                  |  |  |  |  |  |  |
| H – 2 7                        | 1.92              | $J_{23A,27} = 2.0; J_{23B,27} < 0.5; J_{24,27} < 0.5$                                    |  |  |  |  |  |  |
| H-28,H-2                       | 9 0.90,1.3        | 38                                                                                       |  |  |  |  |  |  |
| H-30                           | 1.36              |                                                                                          |  |  |  |  |  |  |

TABLE 1. <sup>1</sup>H NMR parameters of schisanlactone B<sup>a</sup>

<sup>a</sup>Chemical shift (CDCl<sub>3</sub>) in ppm, relative to internal TMS, coupling constants in Hz. All parameter values were attained by first-order approximation at 400 MHz (Bruker WH-400). <sup>b</sup>The assignments are on the basis of <sup>1</sup>H-<sup>1</sup>H selective decoupling experiments. \*Overlapping signals. Some coupling constants are assigned directly from the coupling partners and some are obtained by <sup>1</sup>H-<sup>1</sup>H selective decoupling.



TABLE 3. Results of NOE enhancement studies on schisanlactone B\*

| Irrid. | Obser.            | NOE(%) Conclusions              | Irrid.            | Obser.             | NOE(%) | Conclusions                             |
|--------|-------------------|---------------------------------|-------------------|--------------------|--------|-----------------------------------------|
| H – 29 | H-5 <sub>ax</sub> | 6.2                             | H-6 <sub>ax</sub> | H-19A              | 2.7    | H-18A is endo.                          |
|        | H-6eq             | 5.9 $H-5_{ax}$ , $H-6_{eq}$ ,   |                   | H-6 <sub>eq</sub>  | 8.7    |                                         |
| н-30   | H-5ax             | 7.4 H-7 <sub>ax</sub> , H-28,   |                   | H-8 <sub>ax</sub>  | 2.5    | H-18, H-19A, H-18B                      |
| H-6    | H-6 ax            | 11.1 H-15, H-11 <sub>ax</sub> , | H-18              | H-8 <sub>ax</sub>  | 12.2   | H-8 <sub>ax</sub> , H-6 <sub>ax</sub> , |
| -4     | H-5ax             | 4.1 H-29 are <u>syn</u>         |                   | H-12 <sub>ax</sub> | 10.9   | $H-12_{ax}$ , $H-15\beta$ ,             |
| H – 28 | H-5 av            | 4.2 and $\alpha$ . C-30         | H-16 <sub>8</sub> | H-15 <sub>R</sub>  | 16.0   | H-16β, H-22, H-20,                      |
|        | H-11 av           | 5.0 is close to O,              | 4                 | H – 2 2            | 6.2    | H-23B are <u>syn</u> and                |
|        | H-15              | 8.0 C-4, C-5 plane.             | Н-22              | H-16 <sub>R</sub>  | 5.9    | β.                                      |
|        | н-7               | 4.2                             |                   | Н-23В              | 4.0    |                                         |
| H-1    | н-2               | 13.8                            |                   | H-20               | 4.0    |                                         |
|        | H-11 av           | 4.3                             | H-21              | H – 2 3 A          | 6.5    | H-21, H-23A are                         |
|        | H-11              | 6.6                             |                   |                    |        | <u>syn</u> in preferred                 |
|        | еч<br>Н-19В       | 4.1 H-10P is ore                |                   |                    |        | conformation                            |
| H-19B  | H-1               | 2.5                             | H-18              | H – 2 0            | 20.0   | H-18, H-20 are                          |
|        | H-19A             | 7.2                             |                   |                    |        | syn in preferred                        |
|        |                   |                                 |                   |                    |        | conformation                            |
|        |                   |                                 | Н-28              | н – 24             | 9.0    |                                         |

\*Measured in  $CDC1_3$  on a Bruker WH-400 spectrometer.

|        | Chemical |        | hemical |         | Chemical | · · · · · · · · · · · · · · · · · · · | Chemical |
|--------|----------|--------|---------|---------|----------|---------------------------------------|----------|
| Carbon | Shift    | Carbon | Shift   | Carbon  | Shift    | Carbon                                | Shift    |
| C-1    | 150.44   | C-9    | 33.47   | C-17    | 48.11    | C-24                                  | 139.24   |
| C – 2  | 120.49   | C-10   | 28.68   | C-18    | 16.96    | C-25                                  | 128.49   |
| C-3    | 167.33   | C-11*  | 32.14   | C-19    | 24.05    | C – 26                                | 166.43   |
| C-4    | 84.52    | C-12   | 32.55   | C – 2 O | 39.23    | C – 2 7                               | 17.18    |
| C-5    | 46.38    | C-13** | 48.71   | C-21    | 13.18    | C – 2 8                               | 18.99    |
| C-6    | 24.45    | C-14** | 45.57   | C-22    | 80.48    | C-29                                  | 29.24    |
| C~7*   | 28.98    | C-15*  | 26.92   | C – 2 3 | 23.60    | C-30                                  | 22.08    |
| C-8    | 45.07    | C-16   | 35.02   |         |          |                                       |          |

TABLE 2. <sup>13</sup>C NMR chemical shifts of schisanlactone  $B^a$ 

<sup>a</sup>In CDCl<sub>3</sub>, chemical shifts in ppm relative to internal TMS, determined at 100 MHz on a WH-400 spectrometer. The assignments are based on  $\{^{1}H\}-^{13}C$  single frequency selective decoupling with multiplicity determined by  $^{13}C$  spin-echo with gated  $^{1}H$  decoupling.<sup>5</sup> \*,\*\*May be interchanged.

## References

- 1. J.-S. Liu, M.-F. Huang, G.F. Arnold, E. Arnold, J. Clardy, and W.A. Ayer, <u>Tetrahedron Letters</u>, preceding paper.
- 2. J.P. Phillips, <u>Spectra-Structure Correlation</u>, Academic Press, New York, London, 1964, p. 34.
- 3. D.S. Irvine, J.A. Henry, and F.S. Spring, J. Chem. Soc., 1316 (1955).
- L.M. Jackman and S. Sternhell, <u>Application of Nuclear Magnetic Resonance</u> <u>Spectroscopy in Organic Chemistry</u>, 2nd ed. Pergamon Press, Toronto, 1969, p. 98.
- 5. D.W. Brown, T.T. Nakashima, and D.L. Rabenstein. J. Magn. Reson. <u>45</u>, 302 (1981).
- The financial support of the Natural Sciences and Engineering Research Council of Canada is acknowledged with thanks.

(Received in USA 3 January 1983)